
Aha-Secret

Owner: AHA-OIDA
Reviewer: whotwagner

Contributors:
Date Generated: Wed Oct 30 2024

 Executive Summary

 High level system description
 aha-secret allows you to store a secret message encrypted. Only the generated link could decrypt the message again. The message is encrypted by your browser and decrypted by the browser of the
person who is allowed to read it. The first time someone clicks on the link, the message is automatically deleted from the server.

 Summary

Total Threats 31

Total Mitigated 30

Not Mitigated 1

Open / High Priority 1

Open / Medium Priority 0

Open / Low Priority 0

Open / Unknown Priority 0

STRIDE High Level
High level STRIDE-Diagram

Send encrypted secret

Return bin_id

Return encrypted payload

Ask for secret

Result

Query Database

Query Ratelimit

Result

DataData

IP-Adress-Data

IP-Address-Data

Database files

AHA Webapp

RAM

Memcache

SQLITE

Sender

Receiver

STRIDE High Level

 Send encrypted secret (Data Flow)

Number Title Type Priority Status Score Description Mitigations

15 Attacker fills up disk by
sending data masses

Denial of
service

Medium Mitigated Attacker posts very large amount of data in
order to fill up the disk

* Ratelimit via Rack::Attack
* Low Sizelimit for payload

16 Attacker fills up disk by
sending many requests

Denial of
service

Medium Mitigated Attacker sends many requests to fill up disk or
exhaust other resources

Ratelimit via Rack::Attack

20 Attacker sends XSS-
Payload to Reciever

Tampering Medium Mitigated An attacker could send xss-payload to reciever
to execute malicious javascript in the webrowser
of the reciever

* Using Content Security Policy using
Rack::Protection
* Textarea limits possible payloads for xss

21 Attacker injects SQL-
commands

Tampering Medium Mitigated Attacker injects sql commands * Using well known ActiveRecord-gem that
uses safe methods to interact with the
database
* Every record has an encrypted payload

and the keys are never on the server

41 An eavesdropper can
read the secret payload

Information
disclosure

High Mitigated An eavesdropper can read the secret payload * The payload is encrypted with AES256-
GCM and the secret is never sent to the
server
* The webapp(crypto-api.js) only works
with HTTPS or on local-installations

 Return bin_id (Data Flow)

Number Title Type Priority Status Score Description Mitigations

38 An eavesdropper could intercept
the traffic and read out data

Information
disclosure

Low Mitigated An eavesdropper could intercept the
traffic and read out data. For example
the bin_id.

The javascript crypto-library does only
work if the backend runs on localhost or
uses HTTPS

43 Adversary-in-the-Middle could
tamper data

Tampering Medium Mitigated Adversary-in-the-Middle could tamper
data to produce xss or other malicious

payloads

* HTTPS
* HSTS

47 Adversary-in-the-Middle could
tamper data to disrupt the
service

Denial of
service

Medium Mitigated Adversary-in-the-Middle could tamper
data to disrupt the service

* HTTPS
* HSTS

 Return encrypted payload (Data Flow)

Number Title Type Priority Status Score Description Mitigations

42 An eavesdropper can read the

secret payload

Information

disclosure

High Mitigated An eavesdropper can read the secret

payload

* The payload is encrypted with AES256-

GCM and the secret is never sent to the
server
* The webapp(crypto-api.js) only works
with HTTPS or on local-installations

44 Adversary-in-the-Middle could
tamper data

Tampering Medium Mitigated Adversary-in-the-Middle could tamper
data to produce xss or other malicious
payloads

* HTTPS
* HSTS

Number Title Type Priority Status Score Description Mitigations

48 Adversary-in-the-Middle could
tamper data to disrupt the
service

Denial of
service

Medium Mitigated Adversary-in-the-Middle could tamper
data to disrupt the service

* HTTPS
* HSTS

 Ask for secret (Data Flow)

Number Title Type Priority Status Score Description Mitigations

25 Enumerate possible

payload-ids

Information

disclosure

Medium Mitigated An attacker could try to enumerate

possible id numbers of payload in order to
delete secrets of other people.

Using secure token of the ActiveRecord

40 An eavesdropper could
intercept the traffic and
read out data

Tampering Low Mitigated An eavesdropper could intercept the traffic
and read out data. For example the bin_id.

The javascript crypto-library does only work if
the backend runs on localhost or uses HTTPS

49 Attacker disrupts service
with flood of requests

Denial of
service

Medium Mitigated Attacker disrupts service with flood of
requests

Ratelimit via Rack::Attack

56 Reciever accidentially
reveals secret and deletes
it

Tampering Medium Mitigated Reciever accidentially reveals secret and
deletes it. For example, a sender creates a
secret and clicks on the link instead of copy
it.

Just clicking on the link does not retrieve the
secret. Only a PATCH-Operation(/reveal) will
fetch the secret and deletes it from the server

 Database files (Store)

Number Title Type Priority Status Score Description Mitigations

58 Dataleak Information
disclosure

High Mitigated The database-files could be accessed by unauthorized entities.

For example by:
* attackers hacked the system
* administrators steal the data
* old harddisk
* aso...

* Data is encrypted on
client side
* Key is never passed on
the server
* Strong encryption
algorithm is used on the
client side

* Data is decrypted on
client side

59 Attacker on server-side
could manipulate data of
any user

Tampering High Mitigated Attacker on server-side could manipulate data of any user * Data is encrypted on
client side
* Key is never passed on
the server
* Strong encryption

algorithm is used on the
client side
* Data is decrypted on
client side

65 Decryption link leaked
and an attacker got the
secret

Information
disclosure

High Mitigated AHA-Secret is not responsible for how the decryption-link is shared.
If the link is somehow disclosed by the user and an unauthorized
entity fetches the key, the secret will be compromised

Additional Password
prevents this

 AHA Webapp (Process)

Number Title Type Priority Status Score Description Mitigations

10 Supply-Chain-Attack:
Backdoored dependencies

Elevation of
privilege

High Mitigated A backdoored dependency could compromise the
server. An attacker could replace the javascript files to
extract the secrets on the client side.

* Reduce dependencies: no nodejs

Number Title Type Priority Status Score Description Mitigations

11 Vulnerable dependency
allows code execution

Elevation of
privilege

High Mitigated A vulnerability in any dependency or 3rd-party software
opens a remote code execution vulnerability

* Minimum features -> less code ->
keep attack vector small
* Dependabot in Github checks for
updates

55 Attacker on server-side
could manipulate data of
any user

Spoofing High Mitigated Attacker on server-side could manipulate data of any
user

* Data is encrypted on client side
* Key is never passed on the server
* Strong encryption algorithm is

used on the client side
* Data is decrypted on client side

51 Attacker on server-side
could manipulate javascript
to exfiltrate secrets

Tampering High Open Attacker on server-side could manipulate javascript to
exfiltrate secrets on the client-side.

52 Decryption link leaked and
an attacker got the secret

Repudiation High Mitigated AHA-Secret is not responsible for how the decryption-
link is shared. If the link is somehow disclosed by the

user and an unauthorized entity fetches the secret, it
must be detected.

* One-Time-Secrets only! The
reciever will notice that the link

does not work anymore.
* Access-Logs
* Custom passwords could prevent
to read the secret with the link
only

53 Dataleak Information
disclosure

High Mitigated The data could leak due to various reasons:

* attackers hacked the system
* administrators steal the data
* old harddisk
* aso...

* Data is encrypted on client side
* Key is never passed on the server

* Strong encryption algorithm is
used on the client side
* Data is decrypted on client side

54 DoS because of floods of
requests

Denial of
service

Medium Mitigated DoS because of floods of requests Requst Ratelimit based on IP using
Rack::Attack

62 Server-side attacker could

guess encryption-key

Information

disclosure

High Mitigated An attacker is able to get the database and tries to

break the encryption

Client-side autogenerated

cryptographic secure random keys
prevent such attacks against
AES256

64 Decryption link leaked and
an attacker gets the secret

Information
disclosure

High Mitigated AHA-Secret is not responsible for how the decryption-
link is shared. If the link is somehow disclosed by the
user and an unauthorized entity fetches the key, the
secret will be compromised

Additional custom password
prevents it

 Sender (Actor)

Number Title Type Priority Status Score Description Mitigations

28 An attacker forces an end user to execute
unwanted actions on the webapp(CSRF)

Spoofing Low Mitigated An attacker forces an end user to execute
unwanted actions on the webapp(CSRF)

Using csrf-token and CORS via
Rack::Protection

32 Attacker denies sending payload Repudiation Low Mitigated Attacker denies sending malicious payloads Access-Logs

 Receiver (Actor)

Number Title Type Priority Status Score Description Mitigations

29 An attacker forces an end user to execute
unwanted actions on the webapp(CSRF)

Spoofing Low Mitigated An attacker forces an end user to execute
unwanted actions on the webapp(CSRF)

Using csrf-token and CORS via
Rack::Protection

33 Attacker denies sending payloads Repudiation Low Mitigated Attacker denies sending malicious payloads Access-Logs

